Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit.
نویسندگان
چکیده
Stray neutron exposures pose a potential risk for the development of secondary cancer in patients receiving proton therapy. However, the behavior of the ambient dose equivalent is not fully understood, including dependences on neutron spectral fluence, radiation weighting factor and proton treatment beam characteristics. The objective of this work, therefore, was to estimate neutron exposures resulting from the use of a passively scattered proton treatment unit. In particular, we studied the characteristics of the neutron spectral fluence, radiation weighting factor and ambient dose equivalent with Monte Carlo simulations. The neutron spectral fluence contained two pronounced peaks, one a low-energy peak with a mode around 1 MeV and one a high-energy peak that ranged from about 10 MeV up to the proton energy. The mean radiation weighting factors varied only slightly, from 8.8 to 10.3, with proton energy and location for a closed-aperture configuration. For unmodulated proton beams stopped in a closed aperture, the ambient dose equivalent from neutrons per therapeutic absorbed dose (H*(10)/D) calculated free-in-air ranged from about 0.3 mSv/Gy for a small scattered field of 100 MeV proton energy to 19 mSv/Gy for a large scattered field of 250 MeV proton energy, revealing strong dependences on proton energy and field size. Comparisons of in-air calculations with in-phantom calculations indicated that the in-air method yielded a conservative estimation of stray neutron radiation exposure for a prostate cancer patient.
منابع مشابه
Monte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملCalculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code
Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver. Materials and Methods: For si...
متن کاملAssessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملDose GRID increase the unwanted photoneutron dose to the patients in GRID therapy?
Introduction: GRID therapy is a treatment modality in which a high dose of radiation in a single fraction is given to the tumor. This technique previously was used to treat bulky tumors with orthovoltage beams. Recently, studies have been conducted to suggest that GRID therapy with megavoltage photons can be useful in palliative treatments. On the other hand, there has always ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2008